
Mining frequent item sets without candidate
generation using FP-Trees

 G.Nageswara Rao M.Tech, (Ph.D)

Aditya Institute of Technology and Management, Tekkali, Srikakulam (DT), A.P, India.

 Suman Kumar Gurram (M.Tech I.T)

Abstract

 There are so many algorithms for extracting
frequent item sets.. These are very important for mining
association rules as well as for many other data mining tasks
. So many methods have been implemented for mining
frequent item sets using a prefix tree structure known as
frequent Pattern Tree (FP-Tree) for storing all the
information about frequent item sets. In this paper we
propose a new technique called fp-array technique based on
FP-Tree Data structure, that reduces the traverse time of FP-
Trees and we can improve the performance of FP-Tree
based algorithms. This FP-array technique will give the
good results for sparse data sets. It consumes more memory
when we use the sparse data sets , consumes less memory
for dense data sets and the performance of this algorithm is
very well when the minimum support is low.

Index Terms – frequent Pattern - Tree, frequent item sets,
association rules.

1.INTRODUCTION

Mining of frequent item sets (FIS) is a fundamental problem
for mining association rules [1] [2]. It also plays an
important role in other data mining tasks such as sequential
patterns, episodes, multi dimensional patterns[7] [8].etc.The
description of problem is as follows , Let I={i1,i2….in} be a
set of items and D be a multi set of transactions, where each
transaction T is a set of items such that T .For any ,we
say that a transaction T contains X if X T.The set X is
called an item set. The set of all X I (the powerset of I)
naturally forms a lattice, called the item set lattice. The
count of an item set X is the number of transactions in D
that contain X.The support of an item set X is the proportion
of transactions in D that contain X. Thus ,if the total number
of transactions in D is n, then the support of X is divided by
n.100 percent. An item set X is called frequent if its support

is greater than or equal to some given percentage s, where s
is called the minimum support.

When a transaction database is very dense and the minimum
support is very low, i.e., when the database contains a
significant number of large frequent item sets, mining all
frequent item sets might not be a good idea. For example, if
there is a frequent item set with size l, then all 2l nonempty
subsets of the item set have to be generated. However, since
frequent item sets are downward closed in the item set
lattice, meaning that any subset of a frequent item set is
frequent, it is sufficient to discover only all the maximal
frequent item sets (MFIs). A frequent item set X is called
maximal if there does not exist frequent item set Y such that
X subset Y . Mining frequent item sets can thus be reduced
to mining a “border” in the item set lattice. All item sets
above the border are infrequent and those that are below the
border are all frequent. Therefore, some existing algorithms
only mine maximal frequent item sets.

However, mining only MFIs has the following deficiency:
From an MFI and its support s, we know that all its subsets
are frequent and the support of any of its subset is not less
than s, but we do not know the exact value of the support.
For generating association rules, we do need the support of
all frequent item sets. To solve this problem, another type of
a frequent item set, called closed frequent item set (CFI),
was proposed in . A frequent item set X is closed if none of
its proper supersets have the same support. Any frequent
item set has the support of its smallest closed superset. The
set of all closed frequent item sets thus contains complete
information for generating association rules. In many cases,
the number of CFIs is greater than the number of MFIs,
although still far less than the number of FIs.

1.1 Mining FIS

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2677

The first algorithm Apriori for mining frequent item sets
was proposed by Agarwal et al. It is a bottom-up breadth
first search algorithm. This uses hash-trees to store frequent
item sets and candidate item sets. It needs l database scans if
the size of the largest frequent item set is l .

The Next algorithm FP-Growth method (novel algorithm)
for mining frequent item sets was proposed by Han et al. It
is a bottom-up depth first search algorithm. This uses FP-
Tree to store frequency information of the original data base
in a compressed form . It needs only 2 database scans and
no candidate generation is required.

1.2 Mining Maximal frequent Item sets

Several algorithms have been proposed for Mining Maximal
frequent item sets. These algorithms are different mainly in
the adopted main memory data structures and in the strategy
to visit the search space.. They are MAFIA, GenMax ..etc
and these algorithms have some drawbacks . Smart Miner ,
also a depth-first algorithm, uses a technique to quickly
prune candidate frequent item sets in the item set lattice.
The technique gathers “tail” information for a node used to
find the next node during depth-first mining in the lattice.
Items are dynamically reordered based on the tail
information. Smart Miner is about 10 times faster than
MAFIA and GenMax.

1.3 Mining Closed frequent Item sets

Several algorithms have been proposed for Mining Maximal
frequent item sets are A-Close , CHARM and etc.. . a
different algorithm CLOSET for mining CFIs was proposed
by pei at al. In this The FP-tree

structure was used and some optimizations for reducing the
search space were proposed. The experimental results
reported in showed that CLOSET is faster than CHARM
and A-close. CLOSET was extended to CLOSET+ by Wang
et al. in to find the best strategies for mining frequent closed
item sets. CLOSET+ uses data structures and data traversal
strategies that depend on the characteristics of the data set to
be mined. Experimental results in showed that
CLOSET+outperformed all previous algorithms.

1.4 Contributions

One of the important contributions of our work is a FP-array
technique that uses a special data structure, called an
 FP-array, to greatly improve the performance of the
algorithms on FP-trees. The FP-tree has been shown to be a
very efficient data structure for mining frequent patterns [3],
[4], [10], [11], [16] and its variation has been used for
“iceberg” data cube computation [9]. We first demonstrate
that the FP-array technique drastically speeds up the FP-
growth method on sparse data sets, since it now needs to
scan each FP-tree only once for each recursive call

emanating from it. This technique is then applied to our
previous algorithm FP-max for mining maximal frequent
item sets[3][4]. We call the new method FP max*. For
checking maximal frequent item sets used MFI-Tree and
for checking closedness of frequent item sets used a tree
called CFI-Tree.

2 DISCOVERING frequent Item set’s

2.1 The FP-Tree Structure and FP-Growth Algorithm

The algorithm Frequent Pattern-Growth method[3] [4]
(novel algorithm) for mining frequent item sets was
proposed by Han et al. It is a bottom-up depth first search
algorithm. This uses FP-Tree to store frequency information
of the original data base in a compressed form .
Compression is achieved by building the tree in such a way
that overlapping item sets share prefixes of the
corresponding branches.

The FP-growth method relies on the following principle: If
X and Y are two item sets, the count of item set X U Y in
the database[5] is exactly that of Y in the restriction of the
database to those transactions containing X. This restriction
of the database is called the conditional pattern base of X
and the FP-tree constructed from the conditional pattern
base is called X0s conditional FP-tree, which we denote by
TX. We can view the FP-tree constructed from the initial
database as T;, the conditional FP-tree for the empty item
set. Note that, for any item set Y that is frequent in the
conditional pattern base of X, the set X � Y is a frequent
item set in the original database .

Let’s an item i in Tx.header, by following the linked list
starting at i in Tx. header, all branches that contain item i
are visited. The portion of these branches from i to the root
forms the conditional pattern base of X U {I} (X union i), so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-tree Tx U {i} by first initializing its header
table based on the frequent items found, then revisiting the
branches of TX along the linked list of i and inserting the
corresponding item sets in T xU{i}. Note that the order of
items can be different in TX and T xU{i}.. As an example,
the conditional pattern base of ffg and the conditional FP-
tree Tffg for the database in Fig. 1a is shown in Fig. 1c. The
above procedure is applied recursively, and it stops when
the resulting new FPtree contains only one branch. The
complete set of frequent item sets can be generated from all
single-branch FP-trees.

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2678

Fig. 1. An FP-tree example. (a) A database. (b) The FP-tree for
the database (minimum support = 20 percent).

Fig. 2. Two FP-array examples. (a) A;. (b) A{g}.

2. The frequent Pair -Array Technique

In fp-growth method we can construct conditional FP-Trees
after constructing FP-Tree. We found out that 80% of time
was used for traversing FP-trees. To reduce the traversal
time we can use a data structure called FP-Array. for each
item j in the header of a conditional FP-tree Tx, two
traversals of Tx are needed for constructing the new
conditional FP-tree TXU{j} The first traversal finds all
frequent items in the conditional pattern base of X U {j} and
initializes the FP-tree TXU{j} by constructing its header
table. The second traversal constructs the new tree TXU{j} .
We can omit the first scan of TX by constructing a frequent
pairs array Ax while building Tx. We initialize Tx with an
attribute Ax.

 Definition. Let T be a conditional FP-tree and I= {j1;i2; . . im}
be the set of items in T header. A frequent pairs array (FP- array)
of T is a (m—1)x (m-1) matrix, where each element of the matrix
corresponds to the counter of an ordered pair of items in I.
Obviously, there is no need to set a counter for both item
Pairs(ij,ik) and (ik; ij). Therefore, we only store the
counters for all pairs (ik; ij) such that k < j.
We use an example to explain the construction of the FP-
tree supposing minimum support is 20 percent. We sort the
frequent items b:5,a:5, d; a, g:4, f:2, e:2, c:2. This is the

order of items is the header table Tb. During the second
scan of the database, we will construct Tb and an FP-array
Ab, as shown in Fig. 2a. All cells in the FP-array are
initialized to 0.

According to the definition of an FP-array, in Ab, each cell
is a counter of a pair of items. Cell Ab[c, b] is the counter
item set {c, b}, cell Ab[c,a]and so forth. During the second
scan for constructing Tb, for each transaction, all frequent
items in the transaction are extracted. Suppose these items
form item set J. To insert J into Tb, the items in J are sorted
according to the order in Tb.header. When we insert J into
Tb, at the same time Ab[i,j] incremented by 1 if {I, j} is
contained in J. For instance, or the second transaction,{b,
a, f, g} is extracted (item h is infrequent) and sorted as b,
a, g, f. This item set is inserted into Tb; as usual and, at the
same time, Ab[f,b], Ab[f,a], Ab[f,g], Ab[g, b], Ab[g, a],
A[a, b] are all incremented by 1. After the second scan, the
FP-array Ab, contains the countsof all pairs of frequent
items, as shown in Fig. 2a.

Next, the FP-growth method is recursively called to mine
frequent item sets for each item in Tb.header. However,
now for each item i, instead of traversing Tb, along the
linked list starting at i to get all frequent items in i’s
conditional pattern base, A; gives all frequent items for i.
For example, by checking the third line in the table for A;,
frequent items b; a; d for the conditional pattern base of g
can be obtained. Sorting them according to their counts, we
get b, d, a. Therefore, for each item i in Tb, the FP-array
Ab makes the first traversal of Tb, unnecessary and each
Tb can be initialized directly from Ab.

For the same reason, from a conditional FP-tree Tx, when
we construct a new conditional FP-tree for X U {i} , for an
item i, a new FP-array A xU {i}g is calculated. During the
construction of the new FP-tree TxU{i}, the FP-array AX
U {i} is filled. As an example, from the FP-tree in Fig. 1b,
if the conditional FP-tree T{g} is constructed, the FP-rray
A{g} will be in Fig. 2b. This FP-array is constructed as
follows: From the FP-array Ab, we know that the frequent
items in the conditional pattern base of {g} are, in
descending order of their support, b, d, a. By following the
linked list of g, from the first node, we get {b, d} :2, so it is
inserted as (b :2;d :2) into the new FP-tree T{g}. At the
same time, A{g}[b, d] is incremented by 1. From the
second node in the linked list, {b, g} :1 is extracted and it
is inserted as (b :1;a :1) into T{g}. At the same time,
A{g}[b,d] is incremented by 1. From the third node in the
linked list, {a, d} :1 is extracted and it is inserted as (d :1;a
:1) into T{g}. At the same time, A{g}[d, a]is incremented
by 1. Since there are no other nodes in the linked list, the
construction of T{g} is finished and FP-arrayA{g} is ready
to be used for construction of FP-trees at the next level of
recursion. The construction of FP-arrays and FP-trees
continues until the FP-growth method terminates.

Based on the foregoing discussion, we define a variant of
the FP-tree structure in which, besides all attributes given

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2679

in [14], an FP-tree also has an attribute, FP-array, which
contains the corresponding FP-array.

Let us analyze the size of an FP-array first. Suppose the
number of frequent items in the first FP-tree Tb is n. Then,
the size of the associated FP-array is proportional to
�n-1 i= n(n-1)/2, which is the same as the number of
candidate large 2-item sets in Apriori in [7]. The FP-trees
constructed from the first FP-tree have fewer frequent
items, so the sizes of the associated FP-arrays decrease. At
any time when the space for an FP-tree is freed, so is the
space for its FP-array. There are some limitations for
using the FP-array technique. One potential problem is the
size of the FP-array. When the number of items in Tb is
small, the size of the FP-array is not very big. For example,
if there are 5,000 frequent items in the original database
and the size of an integer is4 bytes, the FP-array takes only
50 megabytes or so. However, when n is large, n(n-1)/2
becomes an extremely large number. At this case, the FP-
array technique will reduce the significance of the FP-
growth method, since the method mines frequent item sets
without generating any candidate frequent item sets. Thus,
one solution is to simply give up the FP-array technique
until the number of items in an FP-tree is small enough.
Another possible solution is to reduce the size of the FP-
array. This can be done by generating a much smaller set
of candidate large two-item sets as in [15] and only store in
memory cells of the FP-array corresponding to a two-item
set in the smaller set. However, in this paper, we suppose
the main memory is big enough for all FP-arrays.

The FP-array technique works very well, especially when
the data set is sparse and very large. The FP-tree for a
sparse data set and the recursively constructed FP-trees
will be big and bushy because there are not many shared
common prefixes among the FIs in the transactions. The
FP-arrays save traversal time for all items and the next
level FP-trees can be initialized directly. In this case, the
time saved by omitting the first traversals is far greater
than the time needed for accumulating counts in the
associated FP-arrays.

Even for the FP-trees of sparse data sets, the first levels of
recursively constructed FP-trees for the first items in a
header table are always conditional FP-trees for the most
common prefixes. We can therefore expect the traversal
times for the first items in a header table to be fairly short,
so the cells for these items are unnecessary in the FP-array.
As an example, in Fig. 2a, since b, a, and d are the first
three items in the header table, the first two lines do not
have to be calculated, thus saving counting time. Note that
the data sets (the conditional pattern bases) change during
the different depths of the recursion. In order to estimate
whether a data set is sparse or dense, during the
construction of each FP-tree, we count the number of
nodes in each level of the tree. Based on experiments, we
found that if the upper quarter of the tree contains less than
15 percent of the total number of nodes, we are most likely
dealing with a dense data set. Otherwise, the data set is

likely to be sparse.

 2.2 FP-growth*: An Improved FP-Growth Method

Fig. 3 contains the pseudo code for our new method
FP-growth*. The procedure has an FP-tree T as parameter.
T has attributes: base, header, and FP-array. T.base
contains the item set X for which T is a conditional FP-
tree, the attribute header contains the header table, and
T:FP-array contains the FP-array Ax.
In FP-growth*, line 6 tests if the FP-array of the current
FP-
tree exists. If the FP-tree corresponds to a sparse data set,
its FP-array exists, and line 7 constructs the header table of
the new conditional FP-tree from the FP-array directly.
One FP-tree traversal is saved for this item compared with
the FP-growth method in [7]. In line 9, during the
construction, we also count the nodes in the different levels
of the tree in order to estimate whether we shall really
calculate the FP-array or just set TY :FP-array as
undefined.

PROCEDURE FP growth *

Input : A conditional FP-Tree T

Output : The complete set of all FI’s corresponding to T.

Method:

1. If T only contains a single branch B
2. For each subset Y of the set of item in B
3. Output item set Y U T.base with count =

smallest count of nodes in Y:
4. Else for each i in T.header do begin
5. Output Y =T.base U{i} with i count ;
6. If T.FP-array is defined
7. Construct a new header table for Y’s FP-

Tree from FP-array.
8. Else construct a new header from the table T.
9. Construct Y’s conditional FP-Tree Ty and

possible its FP-array Ay;
10. If T≠ Ф
11. Call FP-growth *(Ty);
12. end

figure 3

2.3 FP-MAX*: MINING MFI’S

In [6], we developed FP-max, another method that mines
maximal frequent item sets using the FP-tree structure.
Since the FP-array technique speeds up the FP-growth
method for sparse data sets, we can expect that it will be
useful in FP-max too. This gives us an improved method,
FP-max*. Compared to FP-max, in addition to the FP-array
technique, the improved method FP-max* also has a more
efficient maximality checking approach, as well as several

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2680

other optimizations. It turns out that FP-max* outperforms
FP-max for all cases we discussed in [6].

Fig. 4 gives algorithm FP-max*. In the figure, three
attributes of T, T:base, T:header, and T:FP-array, are the
same as the attributes we used in FP-growth*. The first call
of FP-max* will be for the FP-tree constructed from the
original database, and it has an empty MFI-tree. Before a
recursive call FP-max*(T,M), we already know from line
10 that the set containing T:base and all items in T is not a
subset of any existing MFI. During the recursion, if there is
only one branch in T, the path in the branch together with
T:base is anMFI of the database. In line 2, theMFI is
inserted MIf the FP-tree is not a single-branch tree, then
for each item i in T.header, we start preparing for the
recursive call FP-max*(Ty ,;My), for Y = T.base U{i}. The
items in the header table of T are processed in increasing
order of frequency, so that maximal frequent item sets will
be found before any of their frequent subsets. Lines 5 to 8
use the FP- array if it is defined or traverse Tx. Line 10
calls function maximality_checking to check if Y together
with all frequent items in Y ‘s conditional pattern base is a
subset of any existing MFI in M (thus, we do superset
pruning here). If maximality checking returns false, FP-
max* will be called recursively, with (Ty , My). The
implementation of function maximality_checking will be
explained shortly.

Procedure FP-max *(T,M)

Input : T an FP-tree

 M, the MFI-Tree for T.base
Output: Updated M

Method:

1. if T only contains a single branch B
2. insert B into M
3. else for each i in T.header do begin
4. set Y= T.base U {i}
5. if T.FP-array is defined
6. Let tail be the set of frequent items for i in

T.FP array
7. else
8. let tail be the set of frequent items in i’s

condition pattern base;
9. sort tail decreasing order of the item’s counts;
10. if not maximality_checking (Y U tail, M)
11. Construct Y’s coditinal FP_tree Ty and

possibly its FP_array Ay;
12. Initialize Y’s conditional MFI-tree My;
13. Call FP-max * (Ty,My)
14. Merge My with M.
15. end

Figure 4: FP-max* Algorithm

set containing T:base and all items in T is not a subset of

any existing MFI. During the recursion, if there is only
one branch in T, the path in the branch together with
T:base is anMFI of the database. In line 2, theMFI is
inserted into M. If the FP-tree is not a single-branch tree,
then for each item i in T:header, we start preparing for the
recursive call FP-max* (Ty ,My) , for Y =T.base U {i}.
The items in the header table of T are processed in
increasing order of frequency, so that maximal frequent
item sets will be found before any of their frequent subsets.
Lines 5 to 8 use the FP-array if it is defined or traverse TX.
Line 10 calls function maximality_checking to check if Y
together with all frequent items in Y ‘s conditional pattern
base is a subset of any existing MFI in M (thus, we do
superset pruning here). If maximality_checking returns
false, FP-max* will be called recursively, with (Ty , My)
Note that, before and after calling maximality_checking,if
Y U tail is not a subset of any MFI, we still do not know
whether Y U tail is frequent. If, by constructing Y ‘s
conditional FP-tree Ty , we find out that Ty only has a
single branch, we can conclude that Y U tail is frequent.
Since Y U tail was not a subset of any previously
discovered MFI, it is maximal and will be inserted into
My. The function maximality_checking works as follows:
Suppose tail = i1, i2; ... ik, in decreasing order of
frequency according to M:header. By following the linked
list of ik, for each node n in the list, we test if tail is a
subset of the ancestors of n. Here, the level of n can be
used for saving comparison time. First, we test if the level
of n is smaller thank. If it is, the comparison stops because
there are not enough ancestors of n for matching the rest of
tail. This pruning technique is also applied as we move up
the branch and toward the front of tail. The function
maximality_checking returns true if tail is a subset of an
existing MFI otherwise, false is returned.

Unlike an FP-tree, which is not changed during the
execution of the algorithm, an MFI-tree is dynamic. At
line 12, for each Y , a new MFI-tree My is initialized from
the preceding MFI-tree M. Then, after the recursive call, M
is updated on line 14 to contain all newly found frequent
item sets. In the actual implementation, we however found
that it was more efficient to update all MFI-trees along the
recursive path, instead of merging only at the current level.
In other words, we omitted line 14, and instead on line
2,Bis inserted into the current M, and also into all
preceding MFI-trees that the implementation of the
recursion needs to store in memory in any case.

In details, at line 12, when an MFI-tree Myj for Yj =
i1i2 ... ij is created for the next call of FP-max*, we know
that conditional FP-trees and conditional MFI-trees for
Yj-1 = i1i2 ... i j-1, Yj-2= i1i2 ... ij-2 ,…., Y1= i1, and Y0 =Ф
are all in memory. To make Myj store all already found
MFIs that contain Yj, Myj is initialized by extracting
MFIs from My j-1. The initialization can be done by
following the linked list for ij from the header table of
 My j-1 and extracting the maximal frequent item sets
containing ij. Each such found item set I is sorted
according to the order of items in Myj .header (the same

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2681

item order as in Tyj .header) and then inserted into Myj.
On line 2, we have found a new MFI B in Tyj ,so B is
inserted into Myj . since yj U B also contains yj-1, ...,y1,
y0 and the trees My j-1 , ... My1,My0 are all in memory, to
make these MFI-trees consistently store all already
discovered MFIs that contain their corresponding item set,
for each k =0, 1,2, ... j , the MFI B U(yj_— yk) is
inserted into the corresponding MFI-tree Myk . At the end
of the execution of FP-max*, the MFI-tree My0 (i.e., MФ)
contains all MFIs mined from the original database. Since
FP-max* is a depth-first algorithm, it is straightforward to
show that the maximality checking is correct. Based on the
correctness of the FP-max method, we can conclude that
FP-max* returns all and only the maximal frequent item
sets in a given data set.

In FP-max*, we also used an optimization for reducing
the number of recursive calls. Suppose that, at some level
of the recursion, the item order in T.header is i1, i2, ... ,ik.
Then, starting from ik, for each item in the header table, we
may need to do the work from line 4 to line 14. If for any
item, say im where m ≤ k, its maximal frequent item set
contains items i1, i2, ... , i m-1, i.e., all the items that have not
yet called FP-max* recursively, these recursive calls can
be
omitted. This is because any frequent item set found by
uch a recursive call must be a subset of {i1, i2, ... ,im-1 }
thus, it
could not be maximal.

Figure 5.Size reduced maximal frequent item set tree.

 2.4 FPCLOSE:MINING CFI’S
Recall that an item set X is closed if none of the proper
supersets of X have the same support. For mining frequent
closed item sets, FPclose works similarly to FP-max*.
They
both mine frequent patterns from FP-trees. Whereas FP-
max* needs to check that a newly found frequent ite-
emset is maximal, FPclose needs to verify that the new
frequent item set is closed. For this, we use a closed

frequent item sets tree (CFI-tree), which is another
variation on the FP-tree. 4.1 The CFI-Tree and Algorithm
FPclose as in algorithm FP-max*, a newly discovered
frequent item set can be a subset only of a previously
discovered CFI. Like anMFI-tree, a CFI-tree depends on an
FP-tree Tx and is denoted as Cx. The item set X is
represented as an attribute of T,T.base. The CFI-tree CX
always stores all already found CFIs containing item set X
and their counts.

A newly found frequent item set Y that contains X only
needs to be compared with the CFIs in Cx. If there is no
proper superset of Y in Cx with the same count as Y , the
set Y is closed.In a CFI-tree, each node in the subtree has
four fields:item-name, count, node-link, and level. Here,
level is still used for subset testing, as in MFI-trees. The
count field is needed because when comparing Y with a set
Z in the tree, we are trying to verify that it is not the case
that Y subset of Z and Y and Z have the same count. The
order of the items in a CFI-tree’s header table is the same
as the order of items in header table of its corresponding

The insertion of a CFI into a CFI-tree is similar to the
insertion of a transaction into an FP-tree, except now the
count of a node is not incremented, but replaced by the
maximal count up-to-date. Fig. 6 shows some snapshots of
the construction of a CFI-tree with respect to the FP-tree in
Fig. 1b. The item order in the two trees are the same
because they are both for base. Note that insertions of CFIs
into the top level CFI-tree will occur only after recursive
calls have been made. In the following example, the
insertions would be performed during various stages of the
execution, not in bulk as the example might suggest. In Fig.
6, a node x : l : c means that the node is for item x, that its
level is l and that its count is c. In Fig. 6a, after inserting the
first six CFIs into the CFI-tree, we insert (d, g) with count
3. Since (d , g) shares the prefix d with (d , e), only node g is
appended and, at the same time, the count for node d is
changed from 2 to 3. The tree in Fig. 6b contains all CFIs
for the data set in Fig. 1a. Fig. 8 gives algorithm FPclose.
Before calling FPclose with some (T , C), we already know
from line 8 that there is no existing CFI X such that 1)
T.base subset of X and 2) T:base and X have the same
count (this corresponds to optimization 4 in [13]). If there is
only one single branch in T, the nodes and their counts in
this single branch can be easily used to list the T.base-local
closed frequent item sets. These item sets will be compared
with the CFIs in C. If an item set is closed, it is inserted
into C. If the FP-tree T is not a single-branch tree, we
execute line 6. Lines 9 to 12 use the FP-array if it is defined,
otherwise, T is traversed. Lines 4 and 8 call function closed
checking (Y ,C) to check whether a frequent item set Y is
closed. Lines 14 and 15 construct Y ‘s conditional FP-tree
TY and CFI-tree CY . Then, FPclose is called recursively
for Ty and Cy .

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2682

Figure 6

The implementation of function closed checking is almost
the same as the implementation of function maximality
checking, except now we also consider the count of an item
set. Given an item set Y ={ i1, i2, . . . , ik} with count c,
suppose the order of the items in header table of the current
CFI-tree is i1, i2, . . . , ik. Following the linked list of ik, for
each node in the list, we first check if its count is equal to or
greater than c. If it is, we then test if Y is a subset of the
ancestors of that node. Here, the level of a node can also be
used for saving comparison time. The function closed
checking returns true only when there is no existing CFI Z
in the CFI-tree such that Z is a superset of Y and the count
of Y is equal to or greater than the count of Z.

Figure 7 FP Close Algorithm

By a analysis, we can estimate the total memory
requirement for running FPclose on a data set. If the tree
that contains all CFIs needs to be stored in memory, the
algorithm needs space approximately equal to the sum of the
size of the first FP-tree and its CFI-tree. In addition, as for
mining MFIs, for each CFI, by inserting only part of the CFI
into CFI-trees, less memory is used and the implementation
is faster than the one that stores all complete C FIs. Fig. 9
shows the size-reduced CFI-tree for ; corresponding to the
data set in Fig. 1.In this CFI-tree, only 6 nodes are inserted,
instead of 15 nodes in the complete CFI-tree in Fig. 6b.

3. FI Mining
In the section , we studied the performance of FP-growth*
by comparing it with the original FP-growth method [3],
[4], kDCI [13], dEclat [15], Apriori and PatriciaMine [16].
To see the performance of the FP-array technique, we
implemented the original FP-growth method on the basis of
the paper [14]. The Apriori algorithm was implemented by
Borgelt in [12] for FIMI ’03. The source codes of the other
algorithms were provided by their authors.

Figure 8

Fig. 8 shows the time of all algorithms running on
T100I20D200K. In the figure, FP-growth* is slower than
kDCI, Apriori, and dEclat for high minimum support. For
low minimum support, FP-growth* becomes the fastest. The
algorithm which was the fastest, dEclat, now becomes the
slowest. The FP-array technique also shows its great
improvement on the FP-growth method. FP-growth* is
always faster than the FP-growth method and it is almost
two times faster than the FP-growth method for low
minimum support. When the minimum support is low, it
means that the FP-tree is bushy and wide and the FP-array
technique saves much time for traversing the FP-trees.

We can see that FP-growth* and the FP-growth method

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2683

unfortunately use the maximum amount of memory. Their
memory consumption is almost four times greater than the
data set size. Since the FP-growth* and FP-growth methods
consume almost the same amount of memory, it means that
thememoryspent onthe FP-array technique is negligible. The
memory is mainly used by FP-trees constructed in the FP-
growth method. Fig. 9 shows the peak memory consumption
of the algorithms on the synthetic data set. The FP-growth*
and the FP-growth method consume almost the same
memory, their curves overlap again. In the figure, kDCI
uses the lowest amount of memory when the minimum
support is high. The algorithm dEclat also consumes far less
memory than the other algorithms except kDCI.
.

Fig 9 Memory consumption of mining of FIs on T100120D200K.

4 COMPARISON

Comparing Fig. 8 with Fig. 9, we also can see that
FP-growth* and the FP-growth method still have good
speed
even when they have to construct big FP-trees. We also can
see from the figures that PatriciaMine consumes less
memory than FP-growth*. This is because we implemented
FP-growth* by a standard trie. On the other hand, in
PatriciaMine, the FP-tree structure was implemented
as a Patricia trie, which will save some memory.

 5 SCALABILITY

Fig 10 shows the speed scalability of all algorithms on
synthetic data sets. The same data sets were used in
for testing the scalability of all algorithms for mining all
frequent item sets. Fig 10 shows that FP-max* is
also a scalable algorithm. Runtime increases almost
five times when the data size increases five times. The
figures also demonstrate that other algorithms have good
scalability. No algorithms have exponential runtime increase
when the data set size increases.

Fig 10 Scalability of runtime of mining MFIs

FP-max* possesses good scalability of memory
consumption as well. Memory consumption grows from 76
megabytes to 332 megabytes when data size grows from 16
megabytes to 80 megabytes. All algorithms have similar
scalability on synthetic data sets.

 6 CONCLUSIONS AND FUTURE WORK

Support
Execution
time of
AprioriT

Execution
time of
DIC

Execution
time of
FP-
Growth

50 187ms 226754ms 94ms

60 110ms 184297ms 74ms

70 78ms 161265ms 46ms

80 47ms 106953ms 32ms

90 32ms 74984ms 31ms

We introduced a Frequent Pattern -array technique which
allows using frequent Pattern -trees more efficiently when
mining frequent item sets. Our technique mainly reduces the
time spent on traversing FP-trees, and works especially well
for sparse data sets when compared to dense data . By using
the FP-array technique into the FP-growth method, the FP-
growth* algorithm for mining frequent item sets has been
introduced. Then we have been presented some new
algorithms for mining maximal and closed frequent item
sets. To mine maximal frequent item sets, we have used our
earlier algorithm FP-max to FP-max*. FP-max* not only
uses the FP- array technique, but also an effective
maximality checking approach. For the maximality testing,
a variation on the FP-tree, called an MFI-tree was
introduced for keeping track of all MFIs. In FP-max*, a
newly found FI is always compared with a small set of

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2684

MFIs that are stored ina local MFI-tree, thus making
maximality-checking very efficient. For mining closed
frequent item sets we gave the FPclose algorithm. In this
algorithm, a CFI-tree, another variation of the FP-tree, is
used for testing the closedness of frequent item sets. For all
of our algorithms we have introduced several optimizations
for further reducing their running time a nd memory
consumption.
Both our experimental results and the results of the
independent experiments conducted by the organizers of
FIMI ’03 [12] show that FP-growth*, FP-max*, and
FPclose are Among the best algorithms for mining frequent
item sets.

The algorithms are the fastest algorithms for many cases.
For sparse data sets, the algorithms need more memory
than other algorithms because the FP-tree structure needs a
large amount of memory in these cases. The experimental
results given in this paper show the success of our
algorithms, the problem that FP-growth*, FP-max* and
FPclose consume lots of memory when the data sets are
very sparse still needs to be solved. Consuming too
much memory decreases the scalability of the algorithms, a
Patricia Trie to implement the FP-tree data structure could
be a good solution for the problem.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining
Association Rules between Sets of Items in Large
Databases,” Proc. ACMSIGMOD Int’l Conf. Management
of Data, pp. 207-216, May 1993.

[2]R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. Int’l Conf. Very Large Data
Bases, pp. 487-499, Sept. 1994.

 [3] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns
without Candidate Generation,” Proc. ACM-SIGMOD Int’l
Conf. Management of Data, pp. 1-12, May 2000.

[4] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for
the Best Strategies for Mining Frequent Closed Item sets,”
Proc. Int’l Conf. Knowledge Discovery and Data Mining,
pp. 236-245, Aug. 2003.

[5] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining Frequent
Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach,” Data Mining and Knowledge Discovery,
vol. 8, no. 1, pp. 53-87, 2004.

[6] B Babcock, S Babu, M Datar,et al·Models and issues in
datastreams systems [C]·The 21st ACM SIGACT-
SIGMODSIGART Symp on Priciples of Database Systems,
Madison,2002.

[7] H. Mannila, H. Toivonen, and I. Verkamo, “Discovery
of Frequent Episodes in Event Sequences,” Data Mining and
Knowledge Discovery, vol. 1, no. 3, pp. 259-289, 1997.

[8] M. Kamber, J. Han, and J. Chiang, “Meta rule-Guided
Mining of Multi-Dimensional Association Rules Using Data
Cubes,” Proc. ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, pp. 207-210, Aug. 1997.

 [9] D. Xin, J. Han, X. Li, and B.W. Wah, “Star-Cubing:
Computing Iceberg Cubes by Top-Down and Bottom-Up
Integration,” Proc. Int’l Conf. Very Large Data Bases, pp.
476-487, Sept. 2003.

[10] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A
Maximal Frequent Item set Algorithm for Transactional
Databases,” Proc. Int’l Conf. Data Eng., pp. 443-452, Apr.
2001.

[11] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient
Algorithm for Mining Frequent Closed Item sets,” Proc.
ACM SIGMOD Workshop Research Issues in Data Mining
and Knowledge Discovery, pp. 21-30, May 2000.

[12] Bart Goethals FIMI: Workshop on Frequent Item set
Mining Implementations, The 3rd IEEE International
conference Melbourne, FL, Nov 2003

 [13] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and
F. Silvestri,“kDCI: A Multi-Strategy Algorithm for Mining
Frequent Sets,” Proc. IEEE ICDM Workshop Frequent Item
set Mining Implementations, CEUR Workshop Proc., vol.
80, Nov. 2003.

[15] M.J. Zaki and K. Gouda, “Fast Vertical Mining Using
Diffsets,” Proc. ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, pp. 326-335, Aug. 2003.

[16] A. Pietracaprina and D. Zandolin, “Mining Frequent
Item sets Using Patricia Tries,” Proc. IEEE ICDM
Workshop Frequent Item set Mining Implementations,
CEUR Workshop Proc., vol. 80, Nov. 2003.

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2685

